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The last 20 years have seen a Modeling and Observation 
Revolution for the Earth System 

• Multi-scalar systemic 
observations & modeling 

• Urban and socio-economic 
observatories like CAP-LTER 

• How to design observatories? 

• How to model systems? 

• How to use all this data? 

• By habit we work 
reductionistically, but this is 
complex systems science. 
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Networks and Complex Adaptive Systems 
• Complex Adaptive Systems (CAS’s) involve multiple node types 

connected via multiple directional-weighted networks that create 
feedback and self-organizing control under dynamical conditions. 

• Reductionism is inadequate for CAS’s. 

• In 1998 with ‘Small World’ networks (Watts & Strogatz, 1998) we 
realized that systemic network topology and behavior matter. 

• But, standard network theory (and our thinking) focuses on social 
and communication networks, which are limited special cases. 

• We need new network theories, especially for Process Networks. 

• In this talk we will: 
– Briefly Introduce Process Network Concepts 

– Give examples of Dynamical Process Networks derived from Flux 
Tower and Phenology data 

– Introduce some hypotheses we are testing, and the NEON and NPN 
data products we are using to test them. 

 



Y1 X 

A simple deterministic system is reduced so 
that independent variable Y1 uniquely 
controls process X;  

   X = f ( Y1 ). 

In this case we think we know what X and Y 
are and how to quantify them. 

Experiments isolate the effect of Y on X and 
quantify f over a range of scales 

This is a process network graph 
- Nodes have types 
- Connections have types 
- Connections have direction and weight 
- Connections may have rules or functions 

 
Already, simple network theory does not apply 

How Reductionism Views a Process Network 



Y1 X 

But, there are other factors and subsystems, so 
process X is often a function of several Y’s:                    

 X = f ( Y1, Y2, … YN ). 

The typical conservation equation for a physical 
system includes the history or position of X in 
addition to control inputs: 

 X(t) = X(t-1) + Y1(t) + Y2(t) 

Many systems are approximately like this, at 
least in the net sense and for a narrow range 
of scales and assumptions.  

Mass and energy flow networks governed by 
conservation equations are good examples of 
this type of process network.  

Y2 

How Reductionism Views a Process Network 

X(t-1) 



Y1 X 

Complex systems generally feature coupling 
and feedback between many nodes,  
producing self-organizing subsystem 
behavior, and/or thresholds where key 
couplings turn on and off and 
qualitatively different system states 
emerge (Kumar 2007, Liu et al. 2007). 

• Hierarchies of self-organizing   
subsystems can emerge via feedback. 

• Connections have characteristic 
timescales at which processes operate. 

• Connections have a type, direction, and 
strength (and possibly follow rules) 

• In a multitype network, connections and 
nodes may be qualitatively different. 
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A Process Network (PN) is a network of 
feedback loops and the associated 
timescales that depicts the magnitude 
and direction of flow between the 
different subsystems. The PN graph itself 
defines the system state. (Ruddell and 
Kumar, 2009a) 

How Complex Systems Science Views a Process Network 



Flavors of Process Networks 

Y1 X 

Y2 

The real process network is what we 
usually think about. But we rarely 
(never?) know what that is with 
precision, especially at scales we 
cannot observe. 

real 



Flavors of Process Networks 

Y1 X 

Y2 

The real process network is what we 
usually think about. But we rarely 
(never?) know what that is with 
precision, especially at scales we 
cannot observe. 
 
There is also the potential process 
network which includes all 
connections and nodes that could 
possibly ever exist, including those 
that do currently exist. This is even 
more difficult to establish. 
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Flavors of Process Networks 

Y1 X 

Y2 

The model process network is an 
approximation for modeling or 
observational purposes 

- uses measurable nodes and connections 

- uses aggregated or simulated nodes M 

- focuses on node(s) of interest X at a 
specific space-time scale 

- aggregates real nodes that share a space 
and type to reduce detail, where possible 

- Usually distorts the true system structure 
and behavior, but hopefully not too much 

- Used to predict or to test hypotheses 
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Flavors of Process Networks 

Y1 X 

Y2 

Dynamical DPN’s vs. Steady State PN’s 

- Some connections  are Dynamical (dashed) 
representing some kind of co-variation 

- Some connections are Steady State (solid) 
representing an average static link 

- Experiments often observe co-variation to 
infer process; that is a DPN. 

- Models usually consider changing nodes as 
the ‘variables’ and steady nodes as ‘control 
parameters’, at a given scale and state. 

real 
potential 
model 
dynamical 

P 

M 

Don’t confuse network dynamics 
with dynamical process networks 
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Example: A model linear correlation multitype DPN 

Ecohydrological systems conceptualized as a 
hierarchy of self-organizing subsystems 
characterized by feedback couplings at multiple 
scales [Kumar, 2007]. 



Examples where the DPN coupling  
thresholds distinguish system states  
via changing network topology 
 
Couplings are resolved using Information 
Flow Statistics… ask me later! 



Hydrological drought is a state 
defined by Dynamical Process 
Network Topology decoupling 
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Standardized Precipitation Index 
http://www.drought.unl.edu/ 

Using the Bondville FLUXNET site; a 

corn-soybean ecosystem 
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14 Regional Moisture Feedback Breaks Down During Drought 

Information Flow multitype DPN with network dynamics: 
Observed flux tower Drought state vs. Normal state 

Ruddell and Kumar (2009a) 



Hypotheses and Implications 

Whole-ecosystem DPN couplings derived from fine-scale 
dynamics, such as eddy-covariance flux observations, are a valid 
metric for an ecosystem’s macroscale functional niche and role. 
 

The existence of a significant coupling on an ecosystem’s DPN 
during a phenostage implies sensitivity of the ecosystem to 
changes in the coupled subsystem that occur specifically during 
that phenostage, but not necessarily other phenostages. 
 

Under climate change, ecosystems will generally transition and 
spatially migrate to maintain their DPN’s during all phenostages. 
 

Therefore, if climate or other forcings alter the DPN in a location, 
we may predict that another ecosystem that is adapted to that 
functional DPN role will succeed the current one. 
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FLUXNET: Carbon productivity DPN 
coupling is sensitive to air temperature 
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DPN coupling of ecosystem carbon productivity to other 
subsystems is measured by total information flow T+. 
(Kumar and Ruddell 2010) 

Coupling is sensitive to mean monthly air temperature. 

Define a new parameter, the Thermal Offset Adaptation 
Temperature Θa`, to account for the adaptation of each 
ecosystem. 

When adjusted by Θa`, all ecosystems fall onto a single 
power curve relating T[+] to Θa. 

Freezing Point 



NEON and Phenology Data 
Useful for This Analysis 



NEON Field Sites (current 2013) 

 



 



 



 



Ongoing Work 

• Actually testing these hypotheses… easier said 
than done! 

• Using FLUXNET, mapping DPN’s for all of the 
world’s observed ecosystems. 

• Developing a general principle defining 
phenostages using DPN functional roles rather 
than traditional biological metrics. 
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Abstract 

It is increasingly likely that predictions of decadal climate change and land use 
change will yield the accurate information needed to anticipate ecosystem 
adaptation to human-induced change (e.g. climate variability, land use 
change). It is therefore essential that we develop new theories, modeling 
tools, and data products that are capable of predicting ecosystem adaptation 
to these changes, and that can anticipate how possible nonlinear thresholds 
will affect ecosystem structure, function, and services. This project links 
information about a land surface ecosystem's dynamics (e.g. eddy covariance 
flux tower data) from existing observational networks  (e.g. FLUXNET, LTER, 
NEON), paired with ecosystem phenology data from the U.S. National 
Phenology Network (USNPN) to analyze how key dynamic couplings between 
ecosystems, climate, and hydrology change as ecosystems progress through 
successive phenological stages. The resulting dynamical process networks are 
quantitative graphs of the complex system's network of couplings during each 
phenological stage. By drawing generalizations and patterns from the study of 
many ecosystems, it is possible to use this theoretical framework to quantify 
how ecosystems are sensitive specific climate changes during specific 
phenological stages. 



Appendices 
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Q: What is Information? 
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Q: What is Information? 

A: Information is the 
Answer to a Question 
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Q: What is Information? 

A: Information is the 
Answer to a Question 

Q: What is our Question? 
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Q: What is Information? 

A: Information is the 
Answer to a Question 

Q: What is our Question? 

A: “What will be the Future State 
of Timeseries Variable Y(t)?” 
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Shannon Entropy: The fundamental measure of 
uncertainty and information 

p(y) is the prior probability that discrete 
variable Y takes state y. 

 

H(Yt), the Shannon Entropy, measures the size 
of the question of state; this is also the amount 
of information we gain when we learn the 
answer to the question. 
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How to Measure Information Flow? 
Transfer Entropy! 

• To measure directional information flow and 
assess timescales of flow, we need an 
asymmetric measure of information flow 
 

• Thomas Schreiber [2000] introduces Transfer 
Entropy T, conditioning information shared by 
Xt and Yt on Yt’s history 
 
 
 

• T measures additional information contributed 
by Xt across at time lag τ. Entropy reduced = 
information produced. 
 

• By computing T across many time lags, we can 
assess the time scale of directional coupling 
from Xt to Yt 
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Establish Statistical Significance of Information 
Flow between Xt and Yt 

• How do we decide whether T is large 
enough to represent a significant flow of 
information? 

• Compare measured T against Ts, which is 
the information flow using a time-shuffled 
Xt and Yt “bootstrapping”. 

• When T > Ts, a significant information flow 
exists; Xt contributes significantly to our 
ability to answer questions about future 
states of Yt. 

• Robustness of results additionally ensured 
by quality control including testing on 
coupled Logistic maps, and with various N, 
m, and binning schemes. 
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Measures of Control and 
Synchronization in dynamical systems 

Gross information production T[+](S) 
 A measure of system control exerted by S 
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Total information production TST(V) is the normalized sum of T[+](S)     
           across all subsystems S 

Mean System Shannon Entropy H(V) is the normalized average of all subsystem  
           Shannon Entropies H(S) 

Gross information consumption T[-](S) 

 A measure of the system’s control of S 


